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Abstract
Background Leukemic stem cells (LSCs) present a significant challenge in the treatment of leukemia in patients 
because they exhibit a drug-resistant phenotype, making them difficult to eliminate. Searching for a new anticancer 
drug is crucial for improving leukemia treatment. Plants from the Zingiberaceae family are frequently used in 
traditional medicines due to their safety and accessibility. This study explores the anticancer activity, cancer preventive 
properties, and apoptosis inducing mechanisms of active compounds derived from these plants.

Methods Ten crude ethanolic extracts from each plant of the Zingiberaceae family were obtained using 
maceration techniques. The cytotoxicity of all extracts anticancer was assessed in comparison to anticancer drugs 
(cyclophosphamide, cytarabine, doxorubicin, and idarubicin) using MTT assay on cancer cell lines (KG-1a, K562, A549, 
MCF-7, and HeLa) and peripheral blood mononuclear cells (PBMCs). Cancer prevention properties of the effective 
extracts and their active compounds were evaluated by measuring the levels of tumor necrosis factor-alpha (TNF-α), 
interleukin-2 (IL-2), and nitric oxide (NO) using commercial kits. Cell cycle and cell death analyses were conducted 
using flow cytometry. Moreover, the effects of effective extracts and their active compounds on WT1 and CD34 
expressions, as well as the apoptosis mechanism induced by the active compounds in KG-1a cells, were determined 
by Western blotting.

Results The cytotoxicity tests revealed that crude ethanolic extracts from Curcuma longa, C. zedoaria, and Zingiber 
officinale exhibited effective cytotoxicity against cancer cell lines while demonstrating lower impact on PBMCs. The 
active compounds of C. longa and C. zedoaria are curcuminoids, while those in Z. officinale are shogaol and gingerol. 
Notably, the IC20 values of curcuminoids and shogaol exhibited cancer prevention properties and reduced WT1 
protein expression, thereby inhibiting cell proliferation. Furthermore, shogaol and curcumin demonstrated the ability 
to arrest the cell cycle at the G2/M phase and induce apoptosis through the Akt pathway.

Conclusion These findings highlight shogaol and curcumin as promising compounds for leukemia treatment.
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Introduction
Chemotherapy is one of the effective methods for leuke-
mia treatments. However, most of the chemotherapies 
function by obstructing DNA replication, a mechanism 
that affects both cancer and normal cells alike, leading 
to unpleasant side effects for patients. Plants from the 
Zingiberaceae family are commonly used in traditional 
medicines and as cooking ingredients in Southeast Asia. 
Most plants in this family are extensively employed in 
traditional remedies to address issues such as stomach-
aches, hemorrhoids, blood circulation, and muscular 
pain relief. They are also used in herbal compress balls for 
massages. Moreover, rhizomes and leaves of these plants 
are used as spices and cooking ingredients. Previous 
reports have highlighted the diverse biological activities 
from this family [1–4], presenting an intriguing avenue 
for developing anticancer drugs with reduced side effects, 
improved accessibility, and enhanced safety.

Unregulated inflammation is often associated with the 
development and progression of cancer since inflamma-
tory response can damage the DNA of normal cells. This 
damage increases the risk of mutations that eventually 
contribute to cancer [5–7]. Several active compounds 
from plants, such as sulforaphane, lycopene, curcumin, 
shogaol, and resveratrol, exhibited cancer prevention 
properties by suppressing the production of inflamma-
tory cytokines and nitric oxide (NO), while enhancing 
the phagocytic activity of macrophages [8–12]. Thus, 
suppression of unregulated inflammation represents a 
potential strategy for preventing cancer initiation [13].

Currently, numerous studies have highlighted leukemic 
stem cells (LSCs) as a significant challenge in patients 
with leukemia. These cells exhibit surface marker phe-
notypes CD34+/CD38− and share characteristics with 
hematopoietic stem cells (HSCs) [14, 15]. Additionally, 
they demonstrated greater resistance against chemo-
therapeutic drugs compared to normal leukemic cells, 
making their elimination crucial for improving treatment 
outcomes. Wilms’ tumor 1 (WT1) plays an active role in 
cell growth and development during normal hematopoi-
esis [16–20]. However, the overexpression of WT1 pro-
tein can induce leukemic cell proliferation. Consequently, 
the overexpression of the WT1 gene has been used as a 
biological marker for diagnosing and evaluating minimal 
residual disease (MRD) in leukemia [21]. Furthermore, 
the elevated expression of WT1 protein is associated 
with poor prognosis and worse long-term outcomes in 
acute myeloid leukemia (AML) [21–23], often leading 
to relapse [24]. These findings suggested that WT1 plays 
a crucial role in leukemogenesis, as it is present in both 

leukemia cells and leukemic stem cells. Simultaneously, 
many studies have revealed the crucial role of the Hippo 
signaling pathway in regulating organ size, tissue homeo-
stasis, and cell proliferation. Dysregulation of this path-
way also contributes to various diseases, including cancer 
[25, 26]. In leukemia, Yes-associated protein (YAP) plays 
important roles in proliferation and leukemogenesis, par-
ticularly in chronic myeloid leukemia (CML) [27]. YAP is 
a key molecule in Hippo signaling pathway. Furthermore, 
inhibiting YAP function has been shown to limit cell pro-
liferation and induce apoptosis in HL-60 cells [28]. Thus, 
targeting the Hippo signaling pathway may offer novel 
opportunities for overcoming resistance in leukemic 
stem cells and advancing leukemia treatment.

While numerous reports have explored the biological 
activities of compounds of plants from the Zingiberaceae 
family, there is less information regarding the effects of 
extracts or active compounds from this family on WT1 
protein expression and the Hippo signaling pathway in 
LSCs. To investigate this unexplored aspect, this study 
aims to evaluate the cytotoxicity of ten plant extracts 
from the Zingiberaceae family in a leukemic stem cell 
line, comparing their effects to those on other cancer cell 
lines and peripheral blood mononuclear cells (PBMCs). 
Additionally, we aim to explore the cancer preventive 
properties of extracts from candidate plants and inves-
tigate the apoptotic mechanisms induced by active com-
pounds in KG-1a leukemic stem cell line. By assessing 
their impact on pathways associated with leukemogene-
sis, this study aims to provide new insights into the thera-
peutic potential of these plants for leukemia treatment.

Materials and methods
Crude ethanolic extraction
In June 2019, fresh rhizomes of Alpinia galanga, Boesen-
bergia rotunda, Curcuma aeruginosa, C. longa, C. 
mangga, C. zedoaria, Kaempferia parviflora, Zingiber 
montanum, Z. officinale, and Z. ottensii were collected 
from a local garden in Chiang Mai, Thailand.

The authors confirm that all methods involving the 
plants, and their materials complied with relevant insti-
tutional, national, and international guidelines and legis-
lation. Additionally, these plants are common medicinal 
plants in Thailand and are widely used in Thai tradi-
tional medicine. They are not at risk of extinction. All 
plant materials were identified and authenticated by 
Wannaree Charoensup, Chiang Mai University, Chiang 
Mai, Thailand. Their voucher specimens (deposition no. 
009245 for A. galanga, 009724 for B. rotunda, 0023261 
for C. aeruginosa, 023356 for C. longa, 0023362 for C. 
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mangga, 0023369 for C. zedoaria, 0023370 for K. parvi-
flora, 004581 for Z. montanum, 0023361 for Z. officinale, 
000109 for Z. ottensii) were deposited in the Herbar-
ium, the Faculty of Pharmacy, Chiang Mai University, 
Thailand.

Plant collection was done under the license of the 
Ghana Forestry Commission, according to the guidelines 
of the IUCN Policy Statement on Research Involving 
Species at Risk of Extinction and the Convention on the 
Trade in Endangered Species of Wild Fauna and Flora.

The ethanolic extracts of the fresh rhizomes were 
obtained using a modified maceration technique based 
on a previous study [29]. Briefly, each rhizome was dried 
and ground into a powder. Then, the powder was mac-
erated with 95% ethanol at a ratio of 1:3 for 48  h. The 
filtrates were collected by filtration technique using a 
filter cloth, and the residue was subjected to macera-
tion with 95% ethanol at a ratio of 1:3 for an additional 
48 h, repeated three times. The filtrates were evaporated 
to dryness using a rotary evaporator, and the resulting 
extracts were stored in light-resistant containers within a 
−20 °C freezer.

Active compounds
Standard curcuminoids (80% pure curcumin, 17% 
demethoxycurcumin, and 3% bisdemethoxycurcumin), 
shogaol, and gingerol were purchased from Sigma-
Aldrich (MA, USA). The “in-house” curcuminoids refer 
to compounds purified in our laboratory. These com-
pounds were extracted from natural sources such as the 
rhizomes of C. longa and C. zedoaria, subsequently puri-
fied in our laboratory using column chromatography. The 
purified compounds were then analyzed using HPLC to 
confirm their identity and purity, as described previously 
[30, 31]. The in-house curcumin, demethoxycurcumin, 
and bisdemethoxycurcumin, after column chromatog-
raphy purification, exhibited 100% purity in each com-
pound, as demonstrated in a previous study [32].

Cell culture
Five cancer cell lines (KG-1a, K562, A549, MCF-7, and 
HeLa) were used as human cancer cell line models in 
this study. KG-1a cells were cultured in IMDM (Iscove’s 
Modified Dulbecco’s Medium) medium (Invitrogen™, 
MA, USA) supplemented with 20% fetal bovine serum 
(Capricorn Scientific, Ebsdorfergrund, Germany), 100 
units/mL penicillin and 100  µg/mL streptomycin (Invi-
trogen™, MA, USA). K562 cells were cultured in RPMI 
(Roswell Park Memorial Institute)-1640 medium (Invit-
rogen™, MA, USA) supplemented with 10% fetal bovine 
serum, 2 mM L-glutamine (Invitrogen™, MA, USA), 100 
units/mL penicillin and 100 µg/mL streptomycin. A549, 
MCF-7, HeLa, and RAW264.7 cells were cultured in 
DMEM (Dulbecco’s Modified Eagle Medium) medium 

(Invitrogen™, MA, USA) supplemented with 10% fetal 
bovine serum 100 units/mL penicillin and 100  µg/mL 
streptomycin (Invitrogen™, MA, USA). All cancer cell 
lines were cultured at 37  °C in a humidified incubator 
with 5% CO2.

Isolation of PBMCs
PBMCs were isolated from blood samples using the 
Ficoll-Hypaque technique. Initially, 10–20 mL of blood 
was collected in a heparin tube at a ratio of 1:500 from 
a minimum of three healthy volunteers. Subsequently, 
the blood samples were diluted with Phosphate buffer 
saline (PBS), pH 7.4, at a ratio of 1:1 to reduce viscosity. 
Histopaque-1077 (Sigma-Aldrich, MA, USA) was then 
underlaid the diluted sample and centrifuged at 400×g 
for 30 min. The resulting PBMCs were collected, washed 
with PBS, pH 7.4, and prepared for further experiments.

MTT test
MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetra-
zolium bromide) assay was used to investigate the cyto-
toxicity of the test samples. KG-1a (1.5 × 104 cells/well), 
K562 (1.0 × 104 cells/well), PBMCs (1.0 × 105 cells/well), 
A549 (5.0 × 103 cells/well), MCF-7 (5.0 × 103 cells/well), 
and HeLa (5.0 × 103 cells/well) were seeded into a 96-well 
plate and incubated overnight at 37 °C with 5% CO2. Sub-
sequently, the cells were treated with various concentra-
tions of crude ethanolic extract (0–100  µg/mL), active 
compounds (0–100  µg/mL), or chemotherapeutic drugs 
as positive controls: cyclophosphamide (0–400  µg/mL), 
cytarabine (0–100  µg/mL), doxorubicin (0–1,000 ng/
mL), and idarubicin (0–1,000 ng/mL), with 0.4% DMSO 
as the vehicle control (VC), for 48  h. After that, 5  mg/
mL of MTT dye solution (Sigma-Aldrich, MA, USA) 
was added and incubated for 4 h. The produced forma-
zan crystals were dissolved in 200 µL of DMSO (Sigma-
Aldrich, MA, USA); then, the optical density (OD) was 
measured using an ELISA plate reader (Metertech, Tai-
pei, Taiwan) at 578  nm with a reference wavelength of 
630 nm. The percentage of surviving cells was calculated 
from the absorbance values of the test and control wells 
using the following Equation. 

 
% Cell viability =

ODsample

ODvehicle control
× 100 (1)

where ODsample is a mean absorbance in test well and 
ODvehicle control is a mean absorbance in VC well. The aver-
age percentage of surviving cells at each concentration 
obtained from triplicate experiments was plotted as a 
dose-response curve. Inhibitory concentration values at 
50% growth (IC50 value) were defined as the lowest con-
centration of the test sample that inhibited cell growth by 
50% compared to the untreated control.
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To calculate IC50 values, a dose-response curve was fit-
ted using non-linear regression analysis, as described in 
the GraphPad Prism guidelines ( h t t p  s : /  / w w w  . g  r a p  h p a  d 
. c o  m /  s u p  p o r  t / f a  q /  h o w  - t o  - d e t  e r  m i n e - a n - i c s u b 5 0 s u b /). 
The IC50 value was obtained by determining the point at 
which the curve intersected 50% growth inhibition. Non-
linear regression graphs of the dose-response curve for 
each compound are provided in the supplementary data 
file (Figs. S1–S8).

The selectivity index (SI) of active compounds and che-
motherapeutic drugs was calculated for using the follow-
ing Eq. 

 
Selectivity index (SI) = IC50 N

IC50 C
 (2)

where IC50 N is IC50 for normal cells and IC50 C is IC50 
for cancer cells which were treated with the same com-
pounds in both cells.

Trypan blue exclusion test
This test was used to confirm the cytotoxicity of the test 
samples. The cancer cells after exposure to crude etha-
nolic extracts and active compounds for 48 h were har-
vested and washed with ice-cold PBS, pH 7.4 for 3 times. 
Then, the cells were resuspended with PBS, pH 7.4. The 
cell suspensions were diluted with PBS, pH 7.4 at the 
appropriate dilution before being mixed with 0.2% trypan 
blue solution at 1:2 dilution for cell count on a hemocy-
tometer. From this test, the viable cells and the dead cells 
could also be obviously detected.

Cancer prevention properties
For the measurement of tumor necrosis factor-alpha 
(TNF-α) and NO, RAW264.7 cells were pre-treated with 
plant extracts and active compounds at a non-cytotoxic 
dose (IC20) (Table S9) or 1  µg/mL of dexamethasone 
(positive control) in a 24-well plate for 2 h. Subsequently, 
1 µg/mL of lipopolysaccharide (LPS) (Cat No. 00497693, 
Invitrogen™, MA, USA) was added to each well, and the 
cells were incubated for an additional 24 h to allow suf-
ficient time for the compounds to exert measurable 
anti-inflammatory effects while maintaining cell viabil-
ity. Afterward, supernatants were collected, and the lev-
els of TNF-α and NO were measured using the Mouse 
TNF alpha Uncoated ELISA Kit (Invitrogen™, Thermo-
Fisher Scientific, MA, USA) and the Total Nitric Oxide 
Assay Kit (Invitrogen™, ThermoFisher Scientific, MA, 
USA), respectively, according to the manufacturer’s 
instructions.

For the measurement of interleukin-2 (IL-2), human 
PBMCs were pre-treated with plant extracts and active 
compounds at the IC20 concentration (Table S9) or 1 µg/
mL of dexamethasone (positive control) in a 24-well plate 

for 2  h. Subsequently, 20 µL/mL of phytohemagglutinin 
(PHA) (Cat. No. 10576015, Thermo Fisher Scientific, 
MA, USA) was added to each well, and the cells were 
incubated for an additional 24 h. After that, supernatants 
were collected, and the levels of IL-2 were measured by 
the Human IL-2 Uncoated ELISA Kit (Invitrogen™, Ther-
moFisher Scientific, MA, USA), according to the manu-
facturer’s instructions.

The percentage of NO or cytokine inhibitions were cal-
culated using the following equation:

 
% NO or cytokine inhibition = A − B

A
× 100 (3)

where A is the level of cytokine or NO without treatment, 
and B is the level of cytokine or NO with treatment.

Cell cycle and apoptosis assay
After treating KG-1a cells with active compounds at vari-
ous concentrations for 48 h, the cells were pulsed with 10 
µM BrdU (Sigma-Aldrich, MA, USA) for 20 min at 37 °C 
in an incubator with 5% CO2. Subsequently, the cells 
were harvested, washed with ice-cold PBS, pH 7.4 three 
times, and then fixed with 70% ethanol in PBS, pH 7.4 
at −30 °C. Following fixation, the cells were washed and 
resuspended in 2 N HCl/0.5% Triton X-100 for 30 min at 
room temperature (RT). Then, 0.1 M sodium tetraborate 
decahydrate was added for 2 min at RT to neutralize the 
acid. Subsequently, the cells were stained with FITC-anti-
BrdU antibody for 30 min at RT. After washing, the cells 
were resuspended in propidium iodide (PI) (Dojindo, 
Kumamoto, Japan) in PBS, pH 7.4 at a ratio of 1:1,000. 
The cell cycle phases were detected using a flow cytom-
eter (CytoFLEX S, Beckman Coulter, CA, USA) and ana-
lyzed with the CytExpert program (Beckman Coulter, 
CA, USA).

The flow cytometry data were analyzed to assess both 
apoptosis and cell cycle distribution. Apoptosis was 
evaluated by determining the percentage of cells in the 
sub-G1 phase using the Nicoletti assay. For cell cycle 
analysis, populations in the G1, S, and G2/M phases were 
calculated after excluding the sub-G1 population to avoid 
interference from apoptotic cells, allowing for a clearer 
assessment of cell cycle arrest in different phases. Data 
were presented in separate graphs for the sub-G1 popula-
tion and cell cycle phase distributions.

Cell death analysis
This test was used to confirm the cytotoxicity of crude 
ethanolic extracts and active compounds. KG-1a cells 
after exposure to crude ethanolic extracts and active 
compounds for 48  h were harvested and washed with 
ice-cold PBS, pH 7.4 for 3 times. Then, the cells were 
resuspended with PBS, pH 7.4. The cell suspensions 

https://www.graphpad.com/support/faq/how-to-determine-an-icsub50sub/
https://www.graphpad.com/support/faq/how-to-determine-an-icsub50sub/
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were diluted with PBS, pH 7.4 at the appropriate dilu-
tion before being mixed with 0.2% trypan blue solution 
at 1:2 dilution for cell count on a hemocytometer. From 
this test, the viable cells and the dead cells could also be 
obviously detected.

Additionally, PI staining was used to investigate the 
cytotoxicity of the active compounds. KG-1a cells after 
exposure to the active compounds with various concen-
tration were harvested at different incubation times and 
washed with ice-cold PBS, pH 7.4 for 2 times. Then, the 
cells were resuspended with PI in PBS, pH 7.4 at a ratio 
of 1:10,000. The percentage of dead cells was detected 
by flow cytometry (CytoFLEX S, Beckman Coulter, CA, 
USA) and analyzed by CytExpert program (Beckman 
Coulter, CA, USA).

Both tests provided similar results regarding cell viabil-
ity and cell death analysis.

Western blotting
KG-1a cells (1.5 × 105 cells/mL) were treated with com-
pounds or extracts at different incubation times. Then, 
the cells were harvested and the whole proteins were 
extracted using a RIPA buffer (25 mM Tris-base, pH 
7.6, 0.1% SDS, 1% Triton X-100, 150 mM NaCl, and 1 
mM EDTA). The protein concentration was measured 
using the Folin-Lowry or Bradford assay. The whole pro-
tein lysates (30  µg/lane) were then separated through 
7.5% SDS-PAGE under reducing conditions and then 
transferred to PVDF membranes. The membranes were 
blocked in 5% skim milk in PBS, pH 7.4 at RT for 2  h, 
then, target proteins were probed with specific primary 
antibodies (anti-WT1, anti-CD34, anti-GAPDH, anti-
cleaved caspase-3, anti-cleaved PARP, anti-phospho-Akt, 
anti-phospho-c-Jun, anti-phospho-SAPK/JNK, and anti-
YAP/TAZ) indicated in Table S10 which diluted at a ratio 
of 1:1,000 in PBS, pH 7.4 at RT for 2 h. After incubation, 
the membranes were rinsed 6 times with 0.1% Tween-20 
(Sigma-Aldrich, MA, USA) in PBS, pH 7.4 (PBS-T), each 
time for 5 min. The reaction was followed by HRP-con-
jugated secondary antibody at 1:20,000 dilution in PBS, 

pH 7.4 at RT for 2 h, then, the membranes were rinsed 
6 times for 5 min each with PBS-T. The proteins were 
shown using Immobilon Forte Western HRP substrate 
(Millipore, MA, USA). Finally, the protein band signal 
was quantified by using a scan densitometer (Bio-Rad 
Laboratories, CA, USA).

Statistical analysis
All experiments were performed in triplicate except the 
apoptosis mechanism in KG-1a cells. The average of trip-
licate experiments and standard derivation (SD) were 
used for quantification. The levels of cell populations 
were compared to VC in each experiment. The results 
are shown as mean ± S.D. The SPSS statistics software ver. 
22 (SPSS Inc., IL, USA) was used for statistical analysis. 
Differences between the means of each sample were ana-
lyzed by one-way analysis of variance (one-way ANOVA), 
followed by LSD post-hoc analysis. Statistical significance 
was considered at p < 0.05.

Results
Cytotoxicity of crude ethanolic extracts on cancer cell lines 
and PBMCs
The results indicated that each crude ethanolic extract 
exhibited various levels of cytotoxicity across different 
cancer cell lines and PBMCs. Notably, the crude ethano-
lic extracts of C. longa, C. zedoaria, and Z. officinale dem-
onstrated good cytotoxicity in KG-1a cells, with the IC50 
values of 24.59 ± 1.40, 24.72 ± 3.39, and 21.70 ± 1.83  µg/
mL, respectively. According to National Cancer Institute 
(NCI) criteria, plants with an IC50 of ≤ 30 µg/mL are con-
sidered promising candidates for further investigation in 
cancer treatment [33, 34]. Moreover, these three extracts 
also exhibited substantial cytotoxicity in other cancer 
cell lines, except A549, while demonstrating low cytotox-
icity in PBMCs (Table  1). Raw data for the IC50 values, 
obtained from non-linear regression graphs performed 
in triplicate, are provided in the supplementary file (Figs 
S1–S6 and Tables S1–S6).

Table 1 IC50 values of crude ethanolic extracts from Zingiberaceae plants on cancer cell lines and PBMCs after incubation for 48 h
Crude ethanolic extracts IC50 (µg/mL)

KG-1a PBMCs K562 A549 HeLa MCF-7
A. galanga > 100 42.11 ± 3.84 49.10 ± 6.13 90.24 ± 3.75 52.51 ± 6.66 46.34 ± 3.02
B. rotunda 38.46 ± 0.20 39.83 ± 2.27 27.83 ± 4.49 51.60 ± 5.54 30.08 ± 5.52 38.68 ± 5.79
C. aeruginosa 74.80 ± 2.62 79.11 ± 3.92 64.70 ± 3.63 > 100 57.57 ± 8.16 66.05 ± 2.95
C. longa 24.59 ± 1.40 76.30 ± 9.13 26.32 ± 2.76 80.10 ± 9.23 20.34 ± 0.39 19.56 ± 3.08
C. mangga 83.97 ± 2.04 > 100 48.76 ± 1.58 > 100 66.55 ± 1.45 64.32 ± 5.76
C. zedoaria 24.72 ± 3.39 42.26 ± 3.15 41.17 ± 3.33 > 100 24.68 ± 1.91 18.83 ± 2.41
K. parviflora 29.34 ± 5.09 46.77 ± 1.48 52.38 ± 7.18 71.33 ± 2.57 15.88 ± 0.97 24.48 ± 1.17
Z. montanum 46.65 ± 1.82 56.25 ± 3.41 66.14 ± 3.79 > 100 58.92 ± 5.15 36.05 ± 6.36
Z. officinale 21.70 ± 1.83 69.38 ± 10.50 37.76 ± 5.40 86.37 ± 6.81 12.38 ± 1.49 11.78 ± 1.73
Z. ottensii 50.66 ± 8.14 > 100 > 100 > 100 > 100 26.69 ± 8.35
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Table  1 IC50 values of crude ethanolic extracts from 
Zingiberaceae plants on cancer cell lines and PBMCs 
after incubation for 48 h.

Cytotoxicity of active compounds in KG-1a cells and PBMCs
The active compounds of C. longa and C. zedoaria are 
curcuminoids, including curcumin, demethoxycurcumin, 
and bisdemethoxycurcumin, while Z. officinale contains 
shogaol and gingerol. The purity of all curcuminoids was 
verified using HPLC, as reported in previous studies [30, 
31]. HPLC analysis confirmed that in-house curcumin, 
demethoxycurcumin, and bisdemethoxycurcumin 
achieved 100% purity, as showed in a previous study 
[32]. Cytotoxicity analysis using MTT assay indicated 
that shogaol and three curcuminoids (curcumin, deme-
thoxycurcumin, and bisdemethoxycurcumin) demon-
strated significant cytotoxicity against KG-1a cells, with 
IC50 values of 2.99 ± 0.01, 10.52 ± 0.12, 11.28 ± 0.85, and 
17.91 ± 0.99  µg/mL, respectively. Furthermore, all active 
compounds exhibited higher efficacy in cytotoxicity 
compared to cytarabine and cyclophosphamide against 
KG-1a cells. When evaluating cytotoxicity in PBMCs, all 
active compounds and chemotherapeutic drugs (cyclo-
phosphamide, cytarabine, doxorubicin, and idarubi-
cin) demonstrated lower cytotoxicity in PBMCs than in 
KG-1a cells, except for bisdemethoxycurcumin (Table 2). 
Raw data for the IC50 values, obtained from non-linear 
regression graphs performed in triplicate, are provided in 
the supplementary data (Figs S7–S8 and Tables S7–S8).

SI represents the ratio of the toxic concentration to 
the effective bioactive concentration of a sample. Ideally, 
compounds or drugs with a high SI value have a relatively 
high toxic concentration and a very low active concentra-
tion [35, 36]. In this study, the SI calculation revealed that 
shogaol, gingerol, curcumin, demethoxycurcumin, doxo-
rubicin, and idarubicin had index values greater than 1, 
indicating that these compounds and drugs exhibited 

greater specificity towards KG-1a cells compared to nor-
mal PBMCs (Table 2).

Cancer prevention properties and cytotoxic effects of 
crude ethanolic extracts and their active compounds in 
cancer cell line and PBMCs
To investigate cancer prevention properties of plant 
extracts compared to their active compounds, NO and 
pro-inflammatory cytokines (IL-2 and TNF-α) were 
investigated in RAW264.7 cells and normal PBMCs after 
inflammatory induction and treated with IC20 value of 
each extract and active compound (Table S9). A non-
cytotoxic dose is used to avoid cell death when determin-
ing target proteins in live cells. The result showed that 
all compounds did not show cytotoxicity on RAW264.7 
and PBMCs after incubation for 24 h (Figs. S10 and S11). 
Each compound and extract had a different inhibitory 
effect on NO and cytokines.

Compared to dexamethasone (positive control), all 
compounds and extracts inhibited NO release by more 
than 20% compared to positive control, except crude 
ethanolic extract of Z. officinale and gingerol. When 
comparing the activity of the crude ethanolic extract to 
its active compounds, gingerol showed no significant dif-
ference from the crude ethanolic extract of Z. officinale. 
In contrast, shogaol exhibited significantly higher activ-
ity, inhibiting NO by 46.46 ± 3.71%, which was nota-
bly greater than that of gingerol and its crude ethanolic 
extract, and even more effective than dexamethasone. 
Regarding C. longa, and C. zedoaria, all curcuminoids 
and their crude ethanolic extract showed no significant 
difference in NO inhibitory activity, inhibiting approxi-
mately 35% (Fig. 1).

While most compounds and extracts inhibited TNF-α 
release by more than 20%, all showed significantly lower 
activity than the positive control. However, only gingerol 
showed less than 10% inhibitory activity. When compar-
ing the activity of the crude ethanolic extract to their 
active compounds, shogaol exhibited higher inhibitory 
activity (24.41 ± 0.99%) compared to the crude ethanolic 
extract of Z. officinale and gingerol. Regarding C. longa 
and C. zedoaria, all curcuminoids and their crude etha-
nolic extracts showed no significant difference in TNF-α 
inhibitory activity with inhibition of approximately 25% 
or more (Fig. 2).

All compounds and extracts also demonstrated effec-
tive inhibitory activity for IL-2 release when compared 
to positive control, with more than 20% inhibitory activ-
ity. However, while most crude ethanolic extracts and 
active compounds exhibited significantly higher inhibi-
tory activity than positive control, gingerol showed 
significantly lower inhibitory activity. Comparing the 
activity between crude ethanolic extract and their active 
compounds, shogaol exhibited a significantly higher 

Table 2 IC50 values and SI of active compounds and 
chemotherapeutic drugs in KG-1a cells and PBMCs after 
incubation for 48 h
Compounds and drugs IC50 Selec-

tivity 
index 
(SI)

KG-1a PBMCs

Shogaol (µg/mL) 2.99 ± 0.01 9.18 ± 0.82 3.07
Gingerol (µg/mL) 76.77 ± 1.28 > 100 > 1.30
Curcumin (µg/mL) 10.52 ± 0.12 13.78 ± 0.82 1.31
Demethoxycurcumin (µg/mL) 11.28 ± 0.85 13.87 ± 0.28 1.23
Bisdemethoxycurcumin (µg/
mL)

17.91 ± 0.99 11.64 ± 1.25 0.65

Cyclophosphamide (µg/mL) > 400 > 400 > 1
Cytarabine (µg/mL) > 100 > 100 > 1
Doxorubicin (ng/mL) 652.18 ± 142.06 > 1,000 > 1.53
Idarubicin (ng/mL) 31.27 ± 5.04 > 1,000 > 31.98
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inhibitory activity by 80.04 ± 4.82% when compared to 
the crude ethanolic extract of Z. officinale and gingerol. 
For C. longa and C. zedoaria, all curcuminoids and their 
crude ethanolic extracts showed no significant difference 
in TNF-α inhibitory activity, which was suppressed by 
approximately more than 60% (Fig. 3).

Effect of crude ethanolic extracts and active compounds 
on WT1 and CD34 protein expression in KG-1a cells
Although bisdemethoxycurcumin demonstrated poten-
tial cancer-prevention properties, it was excluded from 
subsequent experiments due to low SI, suggesting it had 
limited specificity for KG-1a cells and diminished thera-
peutic potential. After treatments with IC20 concen-
trations of the crude ethanolic extract of Z. officinale, 
shogaol, gingerol, the crude ethanolic extract of C. longa, 

Fig. 2 Inhibitory effects of crude ethanolic extracts and their active compound on TNF-α production. LPS-activated RAW264.7 cells were incubated 
with crude ethanolic extracts and their active compounds for 24 h. The supernatants were collected and measured the levels of TNF-α by ELISA kit. Most 
compounds and crude ethanolic extracts inhibited TNF-α release by more than 20%, with the crude ethanolic extract of Z. officinale and gingerol show-
ing less than 20% inhibition. All treatments showed significantly lower activity than dexamethasone (positive control). Data are the mean ± SD (n = 3); 
*p < 0.05 vs. positive control

 

Fig. 1 Inhibitory effects of crude ethanolic extracts and their active compounds on NO production. LPS-activated RAW264.7 cells were incubated with 
crude ethanolic extracts and their active compounds for 24 h. The supernatants were collected and measured the levels of NO were measured by NO 
assay. Shogaol, crude ethanolic extracts of C. longa and C. zedoaria, and all curcuminoids significantly reduced NO production compared to dexametha-
sone (positive control), while the crude extract of Z. officinale and gingerol had no effect. Data are the mean ± SD (n = 3); *p < 0.05 vs. positive control
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curcumin, the crude ethanolic extract of C. zedoaria, 
and demethoxycurcumin, (Table S9) the result showed 
that WT1 protein levels were significantly decreased 
by 53.40 ± 6.21, 30.71 ± 3.90, 43.98 ± 8.93, 61.50 ± 3.11, 
44.05 ± 9.81, 48.33 ± 4.62, and 33.37 ± 3.87%, respectively 
when compared to VC (Figs. 4A and B).

Additionally, the CD34 protein levels after treatment 
with the crude ethanolic extract of Z. officinale, shogaol, 
gingerol, the crude ethanolic extract of C. longa, cur-
cumin, the crude ethanolic extract of C. zedoaria, and 
demethoxycurcumin at IC20 concentrations (Table S9) 
were significantly decreased by 33.70 ± 4.21, 35.93 ± 3.70, 
31.95 ± 5.70, 37.99 ± 1.80, 29.29 ± 2.43, 28.24 ± 8.31, and 
32.79 ± 1.56%, respectively, compared to VC (Figs. 4A and 
B).

Interestingly, the results also revealed that all active 
compounds exhibited a more potent inhibitory effect on 
WT1 protein expression than their respective crude eth-
anolic extracts. However, there was no significant differ-
ence in the inhibitory effect between the crude ethanolic 
extracts and their active compounds on CD34 protein 
levels.

Effect of crude ethanolic extracts and active compounds 
on total cell number in KG-1a cells
The result showed that the total cell number after treat-
ments with crude ethanolic extract of Z. officinale, 
shogaol, gingerol, crude ethanolic extract of C. longa, 
curcumin, crude ethanolic extract of C. zedoaria, and 
bisdemethoxycurcumin with IC20 concentrations (Table 
S9) significantly decreased by 35.95 ± 12.61, 35.32 ± 6.10, 
31.39 ± 8.69, 36.32 ± 6.88, 40.75 ± 12.78, 35.97 ± 12.01, and 

47.21 ± 7.98%, respectively, when compared to VC. There 
is no difference in the inhibitory effect between crude 
ethanolic extracts and their active compounds on total 
cell numbers (Fig. 5).

To compare the viable and dead cell proportions across 
treatment groups, normalized cell counts (× 103 cells per 
1  million total cells) were calculated. After treatment 
with the crude ethanolic extracts and their active com-
pounds, the normalized viable cell counts in VC, crude 
ethanolic extract of Z. officinale, shogaol, gingerol, crude 
ethanolic extract of C. longa, curcumin, crude ethanolic 
extract of C. zedoaria, and bisdemethoxycurcumin were 
992.15 ± 7.12, 960.41 ± 11.10, 976.13 ± 13.69, 979.50 ± 8.90, 
972.17 ± 6.19, 954.40 ± 3.19, 961.98 ± 23.65, and 
962.81 ± 19.30 × 103 cells per 1 million total cells, respec-
tively. The normalized dead cell counts in each treatment 
group were less than 65 × 103 cells per 1  million total 
cells, with no significant differences in the proportions of 
viable and dead cells among treatments (Fig. S9).

Effect of curcumin and shogaol on cell cycle in KG-1a cells
Based on their higher efficacy and SI observed in previ-
ous experiments, curcumin and shogaol were prioritized 
for further evaluation. These compounds significantly 
reduced WT1 protein expression, supporting their 
potential as effective anti-leukemic agents. After treat-
ments with various concentrations of active compounds 
and nocodazole (positive control) in KG-1a cells for 48 h, 
distinct effects of compounds compared to VC were 
observed.

Apoptosis was evaluated by measuring the sub-G1 pop-
ulation using the Nicoletti assay. The results showed that, 

Fig. 3 Inhibitory effects of crude ethanolic extracts and their active compound on IL-2 production. PHA-activated PBMCs were incubated with crude 
ethanolic extracts and their active compounds for 24 h. The supernatants were collected and measured the levels of IL-2 by ELISA kit. All compounds 
and extracts inhibited IL-2 release by more than 20% compared to dexamethasone (positive control). Data are the mean ± SD (n = 3); *p < 0.05 vs. positive 
control
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Fig. 5 Antiproliferative effects of crude ethanolic extracts and their active compound in KG-1a cells. KG-1a cells were incubated with various concentra-
tions of crude ethanolic extracts and their active compounds for 48 h. Cells were collected and analyzed by trypan blue exclusion method. All treatments 
significantly decreased the total cell number compared to VC, with no significant difference between crude ethanolic extracts and active compounds. 
Data are the mean ± SD (n = 3); *p < 0.05 vs. VC

 

Fig. 4 Effect of crude ethanolic extracts and their active compounds treatments on CD34 and WT1 protein expressions in KG-1a cells. KG-1a cells were 
treated with crude ethanolic extracts and their active compounds with IC20 concentrations for 48 h. CD34 and WT1 protein levels were determined by 
Western blotting. (A) Representative images and (B) representative bar graph of inhibitory effects of crude ethanolic extracts and their active compounds 
on WT1 and CD34 protein expressions in KG-1a cells for 48 h. The levels of protein were normalized using GAPDH protein levels. Full-length blots are pre-
sented in Supplementary file (Figs. S14–S16). All compounds and extracts inhibited WT1 and CD34 expressions significantly by more than 20% compared 
to VC. Data are the mean ± SD (n = 3); *p < 0.05 vs. VC
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at its IC20 concentration, 6 ng/mL of nocodazole signifi-
cantly increased the sub-G1 population, indicating pro-
nounced apoptosis. In contrast, at their respective IC20 
concentrations, 3 µg/mL of curcumin and 0.12 µg/mL of 
shogaol did not significantly increase the sub-G1 popu-
lation compared to VC. However, at higher concentra-
tions, both curcumin and shogaol noticeably induced cell 
death, with significant increases in the sub-G1 population 
observed (Figs. 6A–B).

To evaluate the effects of curcumin and shogaol on cell 
cycle arrest, the sub-G1 population was excluded, and 
the distribution of cells across cell cycle phases was ana-
lyzed. The results revealed that at the IC20 concentration, 
nocodazole significantly increased the proportion of cells 
in the G2/M phase by 23.48 ± 1.35%, resulting in a signifi-
cant decrease in the S phase population. In contrast, at 
their respective IC20 concentrations, neither curcumin 
nor shogaol induced significant changes in the cell cycle 
phase population compared to VC. However, 1.5 µg/mL 
of shogaol significantly decreased the S phase popula-
tion by 40.56 ± 3.82%, although shogaol did not induce 
cell cycle arrest. At IC50 concentrations, both curcumin 

and shogaol increased the G2/M phase population to 
43.66 ± 6.75% and 31.38 ± 1.60%, respectively, compared 
to VC, resulting in a significant decrease in the S phase 
population (Figs. 6C–D).

Effect of curcumin and shogaol on cell death in KG-1a cells
After KG-1a cells were treated with compounds at their 
IC50 concentrations, the results indicated that both 
compounds could induce cell death in a dose- and time-
dependent manner. Nocodazole (positive control) at 
concentrations of 5–120 ng/mL showed a significant 
induction of cell death after 24  h of incubation when 
compared to VC, and this effect dramatically increased 
at 48  h of incubation (Fig.  7A). Shogaol at 6–9  µg/mL 
notably induced cell death at 6 h, and its effect increased 
continuously across all concentrations with longer incu-
bation times. In contrast, curcumin gradually induced 
cell death after 12 h of incubation (Figs. 7B and C).

Fig. 6 Effect of curcumin, shogaol, and nocodazole on cell cycle distribution in KG-1a cells. Cells were treated with various concentrations of compounds 
and nocodazole (positive control) for 48 h, and cell cycle distribution was analyzed by flow cytometry. Cell cycle was analyzed by flow cytometry (A) 
Histogram and (B) bar graph of the sub-G1 population, showing that nocodazole at IC20 significantly increased apoptosis. While curcumin and shogaol at 
IC20 did not significantly affect the sub-G1 population, both compounds increased apoptosis at higher concentrations. (C) Dot plot and (D) bar graph of 
cell cycle distribution, showing that nocodazole at IC20 increased the G2/M phase population. Curcumin and shogaol did not alter the cell cycle distribu-
tion at IC20 but increased the G2/M phase population and decreased the S phase population at their highest concentrations (IC50). Data are the mean ± SD 
(n = 3); *p < 0.05 vs. VC
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Effects of curcumin and shogaol on apoptotic related-
protein and mechanism of apoptosis in KG-1a cells
To investigate the effects of curcumin and shogaol on 
apoptotic-related proteins in KG-1a cells, the cells were 
treated with IC50 concentrations of curcumin, shogaol, 
and nocodazole (positive control) for 0–12 h at 37 °C in a 
humidified incubator with 5% CO2.

The results showed that shogaol initiated the activa-
tion of cleaved caspase-3 and PARP after 3  h of treat-
ment, whereas curcumin activated both proteins after 
6 h. However, nocodazole failed to induce the activation 
of cleaved caspase-3 and PARP even after 12 h of incuba-
tion, compared to VC (Figs. 8A–C).

Furthermore, the levels of WT1 and TAZ protein 
expressions were investigated using Western blotting 
after treatments with curcumin and shogaol. The results 
showed that WT1 protein levels gradually decreased 

after treatments with curcumin and shogaol com-
pared to non-treatment (0  h incubation time). Notably, 
the WT1 protein level was significantly decreased by 
77.01 ± 8.80% after treatments with curcumin for 6  h, 
and by 22.58 ± 3.99% after treatment with shogaol for 3 h 
when compared to VC. Regarding the TAZ protein, no 
significant change in its abundance was observed. How-
ever, nocodazole failed to reduce WT1 expression even 
after 12 h of incubation (Figs. 8A, D, and E).

After confirming the presence of apoptosis-related 
proteins, the mechanism of apoptosis induced by these 
compounds in KG-1a cells was investigated using West-
ern blotting. To explore this mechanism, the expression 
levels of the phosphorylated forms of c-Jun (p-c-Jun), 
SAPK/JNK (p-SAPK/JNK), and Akt (p-Akt (S473)) were 
examined after treating KG-1a cells with curcumin or 
shogaol for 0–6  h. The results showed that p-c-Jun and 

Fig. 7 Effect of curcumin, shogaol, and nocodazole on cell death in KG-1a cells. KG-1a cells were incubated with various concentrations of curcumin, 
shogaol, and nocodazole (positive control) for different incubation times. After collecting the cells, cells were stained with PI solution and analyzed by 
flow cytometry. Representative bar graph depicting percentage dead cells after treatments with various concentrations and times compared with VC 
in KG-1a cells. (A) Nocodazole induced significant cell death at 24 h, with a dramatic increase at 48 h. (B) Curcumin gradually induced cell death, with 
notable increases after 12 h. (C) Shogaol induced cell death, with significant effects at 6 h and further increases over time. Data are the mean ± SD (n = 3); 
*p < 0.05 vs. VC
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p-SAPK/JNK increased after incubation with shogaol 
or curcumin at 6 h, while p-Akt (S473) decreased at 6 h 
compared to VC (Fig. S12).

Discussion
Inhibition of LSCs has been a key focus in leukemia 
treatment so far [37]. Therefore, LSC targeting therapy 
is a novel strategy aimed at improving patient’s quality of 

life after treatments [38, 39]. In this study, KG-1a cell line 
was used as an LSC model because it exhibits character-
istics similar to those of LSCs, including differentiation, 
proliferation, and self-renewal [40–42]. Plants from the 
Zingiberaceae family are widely used in traditional medi-
cine across Southeast Asia due to their accessibility and 
safety. The exploration of the bioactivities of plants in this 
family holds promise for drug discovery, particularly as 

Fig. 8 Western blot analysis following curcumin, shogaol, and nocodazole treatments in KG-1a cells. KG-1a cells were incubated with IC50 concentration 
of curcumin, shogaol, and nocodazole (positive control) for 0–12 h. The expression of target proteins was analyzed by Western blotting. (A) Protein levels 
after treatment with the IC50 concentrations of curcumin (10 µg/mL), shogaol (3 µg/mL), and nocodazole (10 ng/mL) for 0–12 h. (B) Protein expressions 
for cleaved caspase-3, (C) cleaved PARP, (D) WT1, and (E) TAZ in KG-1a cells after 0–12 h of treatment. The levels of protein were normalized using GAPDH 
protein levels. Full-length blots are presented in Supplementary file (uncropped gels and blot images, Figs. S17–S21). Shogaol induced the activation 
of cleaved caspase-3 and PARP at 3 h, while curcumin triggered these proteins at 6 h. WT1 expression significantly decreased with both curcumin and 
shogaol treatments, but nocodazole had no effect. TAZ levels remained unchanged. Data are the mean ± SD (n = 3); *p < 0.05 vs. VC

 



Page 13 of 16Panyajai et al. BMC Complementary Medicine and Therapies           (2025) 25:87 

potential anticancer agents. Among the 10 crude etha-
nolic extracts obtained from the rhizomes of Zingibera-
ceae plants, each extract exhibited varying cytotoxicity 
across different cancers and leukemic cell lines. Notably, 
extracts from C. longa, C. zedoaria, and Z. officinale dem-
onstrated significant cytotoxicity against KG-1a leuke-
mic stem cells. Moreover, these extracts exhibited strong 
cytotoxic effects on K562, MCF-7, and HeLa cells, with 
less impact on PBMCs. Therefore, C. longa, C. zedoaria, 
and Z. officinale were selected as the candidate plants 
for this study. The active compounds of C. longa and C. 
zedoaria are curcuminoids. Curcumin is the main com-
pound found in C. longa, whereas demethoxycurcumin is 
the most abundant in C. zedoaria [43–45]. Z. officinale 
contains active compounds, namely shogaol and gingerol 
[46]. The anticancer activities of these active compounds 
and their crude ethanolic extracts were compared in this 
study. In the cytotoxicity studies, SI provides insight into 
the relative safety and efficacy of a compound, assessing 
its ability to selectively target and impact cancer cells 
without causing significant harm to normal cells. Val-
ues higher than 1 indicate favorable selectivity against 
cancer cells [35, 36]. In this study, all active compounds 
exhibited SI values greater than 1, except bisdemethoxyc-
urcumin. Notably, shogaol showed an SI value of 3, indi-
cating its specific targeting ability against KG-1a cells.

Suppressing unregulated inflammatory cytokines 
(IL-2 and TNF-α) and NO productions from macro-
phages is one method that can reduce the risk of cancer 
initiation. In this study, the cancer prevention activities 
of the active compounds were compared with those of 
their crude ethanolic extracts. Regarding C. longa and Z. 
zedoaria plants, curcuminoids and their crude ethano-
lic extracts showed no difference in activity. Both com-
pounds decreased the production of IL-2 and TNF-α, 
which are important inflammatory cytokines as well as 
NO. Regarding Z. officinale, shogaol demonstrated bet-
ter inhibitory activity against the inflammatory cytokines 
and NO than either the crude ethanolic extract and gin-
gerol. Therefore, curcuminoids and shogaol emerge as 
promising compounds for cancer prevention studies.

Previous studies have reported that shogaol, gin-
gerol, and curcuminoids exhibited notable anticancer 
activity and cancer prevention property. The content of 
shogaol in the crude ethanolic extract of Z. officinale was 
reported to be very low, constituting less than 2% in fresh 
rhizome [46]. In the current study, shogaol exhibited sig-
nificant anticancer activity when compared to gingerol 
and its crude ethanolic extract. Meanwhile the total cur-
cuminoids content in the crude ethanolic extracts of C. 
longa and C. zedoaria is approximately 6% [43, 44]. How-
ever, the results indicated no significant difference in 
cancer prevention and anticancer activities between cur-
cuminoids and their crude ethanolic extracts.

After confirming the anticancer activity of the extracts, 
we further examined the active compounds to investigate 
their mechanisms of action and clarify their contribu-
tions to the overall activity. However, bisdemethoxycur-
cumin was excluded from further assays due to its low 
SI, indicating limited specificity toward KG-1a cells and 
reduced therapeutic potential.

The WT1 protein is a hallmark in leukemia and plays 
an integral role in leukemogenesis. Increased WT1 pro-
tein expression associated with high rates of cell prolif-
eration [47]. In this study, the effect of active compounds 
compared to their crude ethanolic extracts on WT1 
and CD34 expressions in KG-1a cells were investigated. 
The result showed that at non-cytotoxic doses, all active 
compounds and their crude ethanolic extracts signifi-
cantly decreased WT1 protein expression in KG-1a cells, 
thereby reducing leukemic cell stem cell proliferation. 
The normalized viable cell counts revealed a consistent 
decrease in leukemic cell viability across treatments, 
aligning with the observed WT1 downregulation. This 
supports the role of WT1 in maintaining leukemic cell 
proliferation and suggests that the treatments effectively 
targeted this pathway. Interestingly, each crude ethano-
lic extract showed a stronger inhibitory effect on WT1 
expression than its active compounds. Notably, the crude 
ethanolic extract of Z. officinale demonstrated greater 
WT1 downregulation than shogaol, even though shogaol 
exhibited better cancer prevention properties. This sug-
gests that shogaol may possibly target other leukemia-
related proteins apart from WT1. In this study, CD34, 
a hallmark of the leukemic stem cells that can be phos-
phorylated by protein kinase C (PKC), was investigated. 
The results showed that, although all extracts and active 
compounds could significantly decreased CD34 expres-
sion, the inhibitory effects of each treatment were not 
significantly different.

Despite extensive research on WT1, few studies have 
explored the Hippo signaling pathway in leukemia. Previ-
ous reports have indicated that YAP protein expression in 
K562 and HL-60 cell lines plays an important role in cell 
proliferation in leukemic cells [27, 28]. In contrast, our 
study revealed that KG-1a leukemic stem cells and other 
leukemic cell lines (K562 and EoL-1) did not express YAP 
protein, while TAZ was expressed at a low level in KG-1a 
cells (Figs. S13). However, no significant changes in TAZ 
expression were observed upon extract treatments. 
Although YAP/TAZ have been shown to play important 
roles in chemoresistance in solid tumors, they may not be 
as relevant in leukemic stem cell chemoresistance.

Since curcumin and shogaol demonstrated higher 
efficacy and SI in cytotoxicity studies, both compounds 
were prioritized for further investigation. They signifi-
cantly inhibited WT1 protein expression, suggesting 
their strong potential as anti-leukemic agents. Previous 
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reports have indicated that curcuminoids, particularly 
curcumin, exhibited antiproliferative effects in various 
leukemic cell lines and patients’ leukemic cells [48, 49]. 
Moreover, previous studies have shown that curcumin 
treatment in K562 cells leads to the attenuation of WT1 
auto-regulatory function. This occurs through the inhi-
bition of PKCα and c-Jun N-terminal kinase (JNK) sig-
naling, which suppresses both WT1 auto-regulation 
and c-Jun/AP-1 binding to its cognate consensus site at 
the proximal WT1 gene promoter [50, 51]. Furthermore, 
curcumin decreased cell proliferation by reducing WT1 
protein levels in KG-1a stem cell lines [32]. Meanwhile, 
6-shogaol from Z. officinale played a major role in induc-
ing apoptosis in acute lymphoblastic leukemia (ALL) by 
activating p53 and generating oxidative stress [52]. Addi-
tionally, shogaol suppressed proliferation in oral squa-
mous cell carcinoma (OSCC) cells and induced apoptosis 
by inhibiting the phosphatidylinositol 3-kinase (PI3K)/
Akt signaling pathway, while regulating apoptosis-asso-
ciated factors such as p53, Bax, Bcl-2, and cleaved cas-
pase-3 [53]. This study is the first to report that shogaol 
can inhibit WT1 and CD34 expressions.

The PI3K/Akt signaling pathway and JNK pathway 
regulate numerous cellular processes, including cell 
growth, migration, invasion, and apoptosis. Phosphory-
lation of Akt enhances CDK2 activity, which is required 
for cell progression from the S to G2/M phase and inhib-
its apoptosis [54–56]. Therefore, the inhibition of PI3K/
Akt can induce caspase-dependent apoptosis [55, 57]. 
In this study, curcumin and shogaol were selected for 
further investigation due to their efficacy as active com-
pounds from their respective candidate plants. While 
both curcumin and shogaol demonstrated the ability to 
decrease WT1 protein levels and inhibit cell prolifera-
tion at the IC20 concentrations, non-cytotoxic doses were 
insufficient to arrest the cell cycle in KG-1a cells. IC50 
concentrations were required to induce cell cycle arrest 
at the G2/M phase and promote cell death. Moreover, 
time-course experiments indicated that both compounds 
could induce cell death in a dose- and time-dependent 
manner. To explore the mechanism of curcumin and 
shogaol in inducing cell death in KG-1a cells, the cells 
were treated with the IC50 concentration of each com-
pound. The results indicated that both curcumin and 
shogaol induced apoptosis by decreasing the phosphory-
lation of Akt (S473), leading to an increase in the levels 
of phosphorylated JNK and c-Jun. Subsequently, this pro-
cess resulted in an upregulation of cleaved caspase-3 and 
PARP proteins. Additionally, both curcumin and shogaol 
decreased the expression of WT1 and TAZ proteins, 
which are associated with leukemic cell proliferation.

Conclusion
Our findings suggest that C. longa, C. zedoaria, and Z. 
officinale extracts are potential candidates for cancer 
treatment, exhibiting significant cytotoxicity across vari-
ous cancer cell types. Additionally, these extracts and 
their active compounds demonstrate cancer prevention 
properties by inhibiting the production of IL-2, TNF-α, 
and NO. Furthermore, curcumin and shogaol can arrest 
the cell cycle and induce apoptosis in KG-1a cells through 
the inhibition of the Akt pathway. Thus, curcumin and 
shogaol emerge as promising compounds for leukemia 
treatment, requiring further investigation.
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